Recent advances in understanding plant response to sulfur-deficiency stress.
نویسندگان
چکیده
Sulfur is an essential macronutrient for all living organisms. Plants are able to assimilate inorganic sulfur and incorporate it into organic compounds, while animals rely entirely on organic sources of sulfur. In the last decades sulfate availability in soils has become the major limiting factor for plant production in many countries due to significant reduction of anthropogenic sulfur emission forced by introducing stringent environmental legislation. The sulfur flux after transferring plants from optimal conditions to sulfur deficiency is regulated on multiple levels including transcription, translation and activity of enzymes needed for sulfate assimilation and synthesis of sulfur-containing metabolites. Most of these regulatory steps are not yet fully characterized. Plant responses to sulfur limitation are complex and can be divided into phases depending on the degree of sulfur shortage. The initial responses are limited to adaptations within sulfur metabolic pathway, while multiple metabolic pathways and developmental process are affected when sulfur shortage becomes more severe. The major aim of this work is a comprehensive review of recent progress in understanding the regulation of plant adaptations to sulfur deficit.
منابع مشابه
Improving Phosphorus Efficiency in Crops with Focus on Purple Acid Phosphatase: Potentials and Perspective
Low-phosphorus (P) stress as a key factor limiting plant growth and production is common in most agricultural soils. Most of the soil-applied phosphate will be rapidly immobilized and most of annually applied phosphate fertilizers are fixed in the soil in organic forms by adsorption, sedimentation and transformation. However, excess P application may lead to contamination of water sources by en...
متن کاملA Contribution to Identification of Novel Regulators of Plant Response to Sulfur Deficiency: Characteristics of a Tobacco Gene UP9C, Its Protein Product and the Effects of UP9C Silencing
Extensive changes in plant transcriptome and metabolome have been observed by numerous research groups after transferring plants from optimal conditions to sulfur (S) deficiency. Despite intensive studies and recent important achievements, like identification of SLIM1/EIL3 as a major transcriptional regulator of the response to S-deficiency, many questions concerning other elements of the regul...
متن کاملRecent Advances in Understanding the Molecular Mechanisms Regulating the Root System Response to Phosphate Deficiency in Arabidopsis
Phosphorus (P) is an essential macronutrient for plant growth and development. Inorganic phosphate (Pi) is the major form of P taken up from the soil by plant roots. It is well established that under Pi deficiency condition, plant roots undergo striking morphological changes; mainly a reduction in primary root length while increase in lateral root length as well as root hair length and density....
متن کاملInvolvement of Small RNAs in Phosphorus and Sulfur Sensing, Signaling and Stress: Current Update
Plants require several essential mineral nutrients for their growth and development. These nutrients are required to maintain physiological processes and structural integrity in plants. The root architecture has evolved to absorb nutrients from soil and transport them to other parts of the plant. Nutrient deficiency affects several physiological and biological processes in plants and leads to r...
متن کاملSystems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants.
Sulfur is an essential macro-element in plant and animal nutrition. Plants assimilate inorganic sulfate into two sulfur-containing amino acids, cysteine and methionine. Low supply of sulfate leads to decreased sulfur pools within plant tissues. As sulfur-related metabolites represent an integral part of plant metabolism with multiple interactions, sulfur deficiency stress induces a number of ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica Polonica
دوره 55 3 شماره
صفحات -
تاریخ انتشار 2008